
The Ultra Wideband Transfer Fun
Complex Three-Dimensional Ele

Yury Kuznetsov1, Andrey Baev1, Fabio C

1Moscow Aviation Institute 
(State University of Aerospace Technology) 

Volokolamskoe Shosse 4, 125993, Moscow, Russia 
E-mail: mai_k405@mtu-net.ru

Tel.: +7 095 158 4047

Abstract — the network-oriented ultra wideband transfer 
function representation of complex three-dimensional elec-
tromagnetic structures is investigated. The transfer function 
is consisting of two parts: entire function and rational or 
pole function. The reduction of a rank of an ill-conditioned 
matrix is performed in accordance with the spectral crite-
rion. System identification is carried out by the Matrix Pen-
cil Method (MPM) and a criterion for the model order selec-
tion is introduced. The presented method yields consider-
able reduction of computational effort and allows to gener-
ate compact models of electromagnetic systems.  

Index Terms — Modeling, Frequency-domain synthesis, 
Transfer functions, Time-domain synthesis. 

I. INTRODUCTION

The need of novel and broadband circuitry in nowa-
days applications, especially in mobile communication 
and vehicular sensing equipments, demands the availabil-
ity of reliable and accurate modelling of complex elec-
tromagnetic structures up to the millimetre wave range. 
The simulation of complex three-dimensional electro-
magnetic structures is resulting in an enormous computa-
tional effort and correspondingly large times for simula-
tion. So the application of network-oriented modelling [1] 
in connection with system identification techniques al-
lows reducing the computational effort and the computa-
tional time by orders of magnitude. 

In network theory systematic approaches for one-port 
or multiport circuit analysis are based on the transfer 
function or impulse response representation of the circuit 
elements. This representation may be obtained through 
pole extraction from the numerical solution of the field 
problem for modelling electromagnetic structures. 

The transmission line matrix (TLM) method [2] or fi-
nite-difference time-domain (FDTD) method [3] allows 
to provide the full-wave analysis of complex three-
dimensional electromagnetic structures made of arbitrary 
materials. This is extremely important for ultra wideband 
(UWB) electromagnetic structures, because time-domain 
simulation allows to characterize the properties of these 
structures in a wide frequency band by computing the 
response to a single impulsive excitation. 

According to the singularity expansion method [4] the 
signal, scattered by the electromagnetic structure, can be 
decomposed into early-time and late-time parts. The 
early-time reaction is limited in time-domain and consists 
of the forced oscillations. This part can be represented by 
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tire function, which depends on the driving signal. 
te-time response contains only natural oscillations 
n be defined by the parameters of the electromag-
tructure. 
 subdivision of the total reaction into two parts and 
ing of the structure by using only the late-time re-
 leads to an incorrect transfer function representa-
 the electromagnetic structure. First of all natural 
tions occur not only in the late-time response, but 
early-time part of the reaction too. To use this part 
 total reaction for the network-oriented transfer 
n representation forced oscillations must be re-
 from the signal, scattered by the electromagnetic 
re. It can be done by computing the ratio of the 
onding Fourier transforms of the time-domain 
rms of the scattered and input signals in frequency 

n or by deconvolution of the scattered signal in 
omain. Moreover, the main portion of the total 
energy concentrates in the early-time reaction. The 
e response contains relatively low energy and so 

es substantially corrupted with noise. 
 deconvolution in time-domain can be done by the 
 inversion, but the matrix obtained in this way is 
ditioned. The reduction of a rank of an ill-
ioned matrix is performed in accordance with the 
l criterion [7]. This criterion needs to take into 
eration only the spectral components of the driving 
 exceeding some threshold within the frequency 
idth of the electromagnetic structure. 
 application of MPM to the estimation of transfer 
ns of complex 3-dimentional structures requires a 
y of choosing the order of the method. This strat-
es the analysis of the spectrum of the difference 
between original and reconstructed system impulse 
se. Another problem is the influence of the entire 
n on the accuracy of poles estimation. The method 
ied to the electromagnetic full-wave simulation of 
h antenna. For the electromagnetic simulation the 

ethod is used [2]. Computational results with and 
t applying system identification are compared with 
red data. 

EORY OF TRANSFER FUNCTION REPRESENTATION

s known, that lossless reciprocal three-dimensional 
magnetic structures can be represented by the dy-



adic Green’s function [5]. For example, the Green’s func-
tions in admittance representation is given by 

.',1

',1,',

22

2

0

xx

xxxx

y

yY

j

j  (1) 

The dyadic ',0 xxy  represent the static part of the 

Green’s function, whereas term ',xxy  corresponds to 

a pole at the frequency . Electric and magnetic fields 
may be expanded into a series of basis field functions, the 
amplitudes of which can be treated as generalized volt-
ages and generalized currents respectively. 
     In general case, when we have an excitation pulse with 
finite bandwidth Xex(f) and receive a scattered signal with 
spectrum Xsc(f), which represents electric or magnetic 
component of the scattered field, according to the singu-
larity expansion method the equation for the spectrum of 
the scattered signal is following [4]: 
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where XENT(f) is described by the entire function, the sum 
represents the pure resonant portion of the scattered sig-
nal, N is a number of poles sn=- n+j n on the complex s-
plane, An is the residues of corresponding poles. 

To remove the excitation signal Xex(f) from the scat-
tered field expressions we can compute the ratio of the 
spectra of scattered signal and driving signal. This allows 
to obtain the transfer function representation of the sys-
tem 
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where HENT(f) is the entire part of transfer function. 
Time-domain representation of the system is given by 

the impulse response, which is the inverse Fourier trans-
form of the transfer function (3) 
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Deconvolution of the received signal is done in time-
domain. We sample the scattered signal

1
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where Ts is a sampling period and M is the number of 
samples. The scattered signal can be represented by linear 
convolution of the excitation signal and the impulse re-
sponse
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where hm and EX
mx  are the samples of impulse response 

and excitation signal respectively. We can express (6) in 
matrix form 
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ation (7) can be solved for h by inversion of the 
ion matrix xEX. The main problem is that this ma-
ill-conditioned. 
 condition number Qs of the excitation matrix xEX

a measure of the accuracy of the computation. It 
 relative variations of xSC with relative variations of 
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ere h and xSK are absolute deviations of the im-
response h and scattered signal xSK respectively,  
mbol ||  || denotes the root-mean-square value or 
rm of the corresponding vector. For large Qs the 
 xEX is ill-conditioned and even slight variations of 
attered vector can cause very large errors in the 
ted impulse response h(t). 
re are many different explanations of the reasons 
trix ill-conditioning. It seems that the best explana-
 the ill-conditioned matrix phenomenon in this case 
 given as follows. If the exciting pulse with spec-
ex(f) has a limited width Fm and the system is linear 
e output signal with spectrum Xsc(f) can not con-
ectral components outside this band of width Fm.
ver all signals are sampled according to equations 
 (6), so the maximum frequency in discrete signal 
m is 0,5 Fs = 1/(2 Ts), which is larger than Fm. So 

oblem is to reconstruct the vector of impulse re-
h, which is the superposition of two vectors with 
l width Fm.
 solution of equation (7) can be obtained by singu-

ue decomposition of the excitation matrix xEX [7]: 
                 TEX VUx ,                               (9) 

U and V are orthogonal M x M matrices,  is a 
al matrix which elements are decreasing singular 
 i, i = 1, …, M. The condition number Qs of the 
ion matrix xEX can be defined by using singular 
: 

                     
min

max

i

iQs ,                            (10)                

( i)max is the maximum singular value of the ma-
X, ( i)min is the minimum singular value of the ma-
X. In accordance with singular value decomposition 
excitation matrix xEX the solution of the equation 
 be presented in the following way: 

      SKTSKEX xUVxxh 11
,             (11) 

–1 is the inverse diagonal matrix  with elements 
quation (11) can be written as follow: 
                       Vh ,                                  (12) 

 is a vector with elements defined  in the follow-
y: 



                    i
SKT

i
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,                           (13) 

where i
SKT xU  is i-th element of the matrix  SKT xU .

If the matrix xEX is ill-conditioned, then small singular 
values i will lead to the increase of the corresponding 
elements of the vector . It will cause the enlargment of 
the contribution to the impulse response h of the columns 
of V with matching indexes [7]. The physical meaning of 
these matrix V columns is that they represent discrete 
time signals with spectral components exceeding the lim-
ited spectral width Fm of the excitation signal. Therefore 
these matrix V columns cannot be used through the esti-
mation of impulse response (t).

These properties of matrix V columns help to deter-
mine the singular values i, (i  K, where K  M) which 
can be set equal to zero. The resulting approximation of 
impulse response (t) will satisfy the solution of equation 
(7) in the total least square meaning  [8]. 

After obtaining the system impulse response in time-
domain we proceed with the estimation of the poles using 
Matrix Pencil Method [6]. It is important to determine the 
order of the model or the number of poles, recovered 
from the impulse response. We have chosen the following 
criterion for this. We calculate the difference between 
initial and recovered impulse responses and evaluate the 
Fourier transform of this difference. If the energy of the 
difference spectrum in the working bandwidth of the 
electromagnetic structure is sufficiently low, then we 
have reached the order of the model. 

III. THE TLM SIMULATION OF COMPLEX 
ELECTROMAGNETIC STRUCTURES

The TLM method is a time-space discretizing tech-
nique for the numerical analysis of electromagnetic prob-
lems [2]. The technique is based on the subdivision of the 
space domain into cells upon the surfaces of which the 
electric and magnetic fields are sampled in the two or-
thogonal polarizations at each cell face. The TLM cells 
are modelled by twelve-ports. The discretized electro-
magnetic structure is modelled by a mesh of transmission 
lines with the twelve-ports in the nodes, and the discre-
tized electromagnetic field is represented by impulsive 
waves propagating on the transmission lines and being 
scattered at the nodes of the mesh. Given with kal,m,n the 
12x1 vector of the wave amplitudes incident at the cell 
defined by the index (l, m, n), at the k-th time-step, the 
12x1 vector of wave amplitudes scattered at the next 
time-step k+1bl,m,n , is given by: 

nmlknmlk ,,,,1 aSb , (14) 

where S is the scattering matrix defined as 
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The new update of the k+1 incident wave amplitude is 
done by the hermitian unitary connection matrix  which 
applies as follows: 
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erating (1) and (2) for the entire spatial domain and 
 defined observation time window, the full-wave 
n of the given electromagnetic problem is ob-
 In the present work the TLM has been applied to 
ifferent structures, a rectangular patch antenna, a 
trip stop-band filter on teflon substrate [3], and a 
and LTCC antenna for local multipoint distribu-
rvice (LMDS) applications between 27.5 and 29.25 
This latter presents a more challenging modelling 
ments since it is a multilayered three dimensional 
res with high aspect ratio. The structure of the rec-
ar patch antenna is depicted in Fig.1. 

Fig. 1. Rectangular patch antenna geometry 

IV. RESULTS OF DIGITAL MODELLING

 we present the results of TLM simulations for 
nown patch antenna [3]. The parameters of TLM 
 are following: number of cells = 8745000, sam-
nterval = 0.2179 ps, time steps = 30000, simulation 
 1 h 11 min. The evaluated impulse response is 
 in Fig. 2.  

0 0.5 1 1.5 2 2.5 3
–0.2

–0.1

0

0.1

0.2

t, nsec 

Fig. 2. Impulse response h(t) of patch antenna 
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Fig. 3. Transfer function of patch antenna 

resulting transfer function corresponding to this 
e response, obtained after the decimation of initial 
e response by 60 times, is presented in Fig. 3. It is 



clearly seen, that the maximum frequency of the transfer 
function is slightly more then 30 GHz. 

The positions of the estimated poles on Z-plane are 
shown in Fig. 4. The order of the MPM model was cho-
sen equal to 35 in accordance with the criteria presented 
above. It is seen, that the positions of poles are corre-
sponding to the frequency structure of transfer function. 

The illustration of the order choice criteria is given by 
evaluating the difference between estimated impulse re-
sponse (t) (Fig. 2) and reconstructed impulse response 
h’(t) according to the extracted poles (Fig. 4), which is 
shown in Fig. 5. You can see that the time-domain differ-
ential signal is more then order of magnitude smaller then 
initial impulse response. 
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Fig. 4. Poles diagram on a complex Z-plane. The order of 
model N = 35 
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Fig. 5. The difference between recovered and initial impulse 
response
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Fig. 6. The amplitude spectrum of difference between recov-
ered signal and impulse response 
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 more interesting and very important thing is that 
plitude spectrum of the differential signal (Fig. 6) 
entrated outside the investigated bandwidth of the 
ntenna, which is up to 20 GHz. 

IV. CONCLUSIONS

have presented a method for the numerical compu-
of the ultra wideband transfer function or impulse 
se for network representation of complex three-
sional electromagnetic structures. 
 criteria for determining the order of the MPM and 
mber of decimation for the simulated impulse re-
 of the electromagnetic structures are discussed. 
 presented method of network-oriented modelling, 
exity reduction and system identification tech-
 can be combined and have the potential to reduce 
mputation time for the modelling of the electro-
tic structures by orders of magnitude. Furthermore 
ethods can help the generation of compact models 

tromagnetic structures, which can be embedded in 
omplicated systems. 
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