МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Лабораторная работа № 7К

Влияние положения полюсов и нулей на z-плоскости на частотные характеристики цифрового фильтра (ЦФ)

Голованов В.В.

2003 г.

<u>Цель работы:</u> Исследовать, как формируются всплески и провалы АЧХ ЦФ в зависимости от расположения нулей и полюсов на z-плоскости. Найти оптимальное расположение полюсов и нулей при минимуме порядка фильтра, чтобы удовлетворить предъявленным требованиям к АЧХ. Синтезировать фильтры со стандартными характеристиками (Баттерворта, Чебышёва, эллиптический) для тех же исходных требований к АЧХ и сопоставить полученные результаты. Работа осуществляется с использованием программного пакета МАТLAB.

	Uactora	Гранциа	Гранциа	ZOTUVOLILA D	Sottyvound p
Вариант	лискретизации	траница	траница	Затухание в	лолосе
	Дискретизации	пропускания	залерживания	пропускания	залерживания
	FS, KI Ц	Enass KEu	Feton K	пропуснания Rn лБ	Rs, дБ
1	10	1 pass, KI Ц	1 5top, Ki t	кр, дв	20
1	10	1	1.5	2	30
2	20	3	5	1	25
3	5	0.5	1	2	40
4	50	5	8	1	30
5	40	4	7	1.5	35
6	10	2	3	1	40
7	20	1	1.8	1.5	25
8	10	1.5	1	1	30
9	20	5	3	2	25
10	5	1	0.5	1	35
11	50	8	5	2	40
12	40	7	4	1	25
13	10	3	2	1.5	35
14	20	1.8	1	1	30

Варианты заданий

Вариант	Частота дискретизации	Границы полосы пропускания		Границы полосы задерживания		Затухание в полосе	Затухание в полосе
1	Fs, кГц	Fp1, кГц	Fp2, кГц	Fs1, кГц	Fs2, кГц	пропускания Rp, дБ	задерживания Rs, дБ
15	10	1	1.5	0.5	3	1	30
16	20	3	4	1.5	8	1.5	35
17	5	0.6	0.9	0.3	1.8	2	40
18	50	15	17	12	22	1	25
19	40	10	14	8	17.5	1.5	30
20	10	2	3	1.5	4	2	35
21	20	5.5	6.5	4	9	1	40
22	10	0.5	3	1	1.5	2	30
23	20	1.5	8	3	4	1	35
24	5	0.3	1.8	0.6	0.9	1.5	40
25	50	12	22	15	17	2	25
26	40	8	17.5	10	14	1	30
27	10	1.5	4	2	3	1.5	35
28	20	4	9	5.5	6.5	2	40

Краткие теоретические сведения

Передаточную функцию цифрового фильтра (ЦФ) можно записать, зная нули и полюсы z_k и p_k :

$$K(z) = \ \frac{K_0(z-z_1)(z-z_2)...(z-z_k)...(z-z_M)}{(z-p_1)(z-p_2)...(z-p_k)...(z-p_N)} \ ,$$

где K_0 – некоторый коэффициент (его можно положить равным единице), max(M,N) – порядок ЦФ.

При переходе к выражению для комплексной частотной характеристики делают замену z=exp(j2 π f/Fs)=exp(j θ), где f – текущая частота (в Гц), Fs – частота дискретизации (в Гц), θ - угловой параметр, соответствующий нормированной частоте (при этом θ = π соответствует частоте f=Fs/2). Комплексная частотная характеристика в зависимости от углового параметра θ приобретает вид:

$$K(\theta) = \frac{K_0(\exp(j\theta) - z_1)\dots(\exp(j\theta) - z_k)\dots(\exp(j\theta) - z_M)}{(\exp(j\theta) - p_1)\dots(\exp(j\theta) - p_k)\dots(\exp(j\theta) - p_N)}$$

Каждую скобку вида $(\exp(j\theta) - z_k)$ или $(\exp(j\theta) - p_k)$ можно рассматривать как вектор, направленный из нуля или полюса в текущую точку на единичной окружности, имеющую угловую координату θ (см. puc.1).

Рис.1

При изменении углового параметра в векторы также изменяются, отслеживая положение текущей точки. Изменение модуля вектора даёт вклад данного нуля или полюса в АЧХ ЦФ, а изменение угла между вектором и действительной осью z-плоскости – вклад в ФЧХ ЦФ. Вследствие того что функция $exp(j\theta)$ изменяется периодически и изображающая точка, задающая текущую частоту, скользит по окружности единичного радиуса, возвращаясь в прежние положения, частотные характеристики ЦФ носят периодический характер, повторяясь с интервалом $\Delta \theta = 2\pi$ или $\Delta f = Fs$. Для формирования АЧХ нужного вида следует разметить верхнюю полуокружность единичного радиуса на z-плоскости, обозначив полосы пропускания и задерживания. Для этого граничные пересчитать в угловые параметры: частоты следует $\theta_{rp}=2\pi f_{rp}/Fs$. Полюса нужно располагать в полосе пропускания внутри единичной окружности (для устойчивости фильтра требуется выполнение условия $|\mathbf{p}_k| < 1$ для любого k). Чем ближе полюс к окружности, тем более резкий и узкий всплеск АЧХ получится вблизи значения θ , равного угловому положению полюса $arg(p_k)$ (здесь вектор, проведённый от полюса к окружности, самый короткий, а модуль этого вектора стоит в знаменателе выражения для АЧХ). Нули размещают в полосе задерживания. Чем ближе нуль к единичной окружности, тем глубже провал АЧХ при значении θ , равном угловому положению нуля $arg(z_k)$. На рис.2 приведена диаграмма полюсов и нулей ФНЧ с разметкой полос пропускания и задерживания в виде дуг единичной окружности и соответствующая этой диаграмме АЧХ

фильтра. Каждому комплексному полюсу или нулю соответствует комплексно-сопряжённый, расположенный в нижней полуплоскости.

Порядок выполнения работы

1. Для выданного вам варианта задания выпишите в рабочую тетрадь значения частоты дискретизации, граничных частот полос пропускания и задерживания и требуемых затуханий в этих полосах. Изобразите график допусков. Определите тип фильтра (ФНЧ, ФВЧ, ППФ или ПЗФ). Рассчитайте угловые параметры, соответствующие граничным частотам по формуле:

$$\theta_{\rm rp} = \frac{2\pi f_{\rm rp}}{Fs}$$

Нанесите угловые значения на график допусков, проведя ось θ , параллельную оси частот f.

2. Изобразите в тетради диаграмму полюсов и нулей, разместив полюсы в полосе пропускания, а нули в полосе задерживания. Для начала возьмите фильтр второго порядка (два нуля и два полюса; можете в качестве первоначального варианта взять только два нуля или только два полюса). Запишите ориентировочные значения координат полюсов и нулей.

3. Загрузите MATLAB. В командном окне задайте оператор >> sptool

Будет загружена программа SPTool (Signal Processing Tool). Откроется окно SPTool: startup.spt. Нажмите кнопку New в середине нижней части окна (под списком Filters). Откроется окно Filter Designer. В раскрывающемся списке Algorithm выберите последнюю строку Pole/Zero Editor. В графической части окна появится z-плоскость с нанесёнными на неё

полюсами и нулями. Нажмите кнопку Delete All в нижней части окна. Введите значение частоты дискретизации (в Гц) в поле Sampling Frequency. Пользуясь кнопками с нанесёнными изображениями стрелок и ластика, расположенными под значением частоты дискретизации, а также перемещая мышь с нажатой левой кнопкой, разместите полюсы и нули на z-плоскости в соответствии с рисунком, сделанным вами при выполнении п.2. Редактируемые полюсы или нули отображаются на диаграмме крупными зелёного цвета. Их координаты отображаются в значками разделе Specifications. Следите за тем, остаётся ли фильтр устойчивым (строчка STABLE в разделе Measurements). Невыделенные полюсы И нули отображаются мелкими значками синего цвета. В разделе Specifications задайте систему координат (Polar или Rectangular). Переключитесь в окно SPTool: startup.spt. Нажмите кнопку View под списком Filters. Откроется окно Filter Viewer. Укажите в разделе Plots только один график – АЧХ (Magnitude), задайте масштаб (linear или decibels). Разместите окна Filter Viewer и Filter Designer рядом друг с другом на экране. Перенесите в тетрадь схематичное изображение АЧХ с указанием значений на границах полос пропускания и задерживания. Для более точного определения координат интересующих вас точек графика используйте маркеры. Можно использовать способ увеличения нужной части графика, применяя протаскивание мыши с нажатой левой кнопкой (предварительно нужно нажать соответствующую кнопку панели инструментов).

Изменяйте положения полюсов и нулей, добавляйте новые полюсы и нули, добиваясь обеспечения заданных требований к АЧХ. Стремитесь обойтись наименьшим количеством полюсов и нулей.

Когда задача будет решена, перерисуйте полученную диаграмму полюсов и нулей в тетрадь. Укажите координаты полюсов и нулей. Рядом сделайте схематичное изображение АЧХ, соответствующее конечной диаграмме на z-плоскости. Просмотрите другие характеристики синтезированного ЦФ (ФЧХ, импульсную, переходную, характеристику группового времени запаздывания).

4. Синтезируйте «классические» фильтры для тех же исходных требований, изучите их характеристики и сравните с характеристиками фильтра, синтезированного в п.3. Для этого откройте окно Filter Designer путём нажатия кнопки New в окне SPTool: startup.spt. Укажите класс фильтра в раскрывающемся списке Algorithm. В разделе Specifications укажите тип фильтра (lowpass – ФНЧ, highpass – ФВЧ, bandpass – ППФ, bandstop – ПЗФ) и задайте требования к АЧХ. Нажмите кнопку Apply.

Вернувшись в окно SPTool: startup.spt, выделите идентификатор синтезированного фильтра в списке Filters и нажмите кнопку View. Откроется окно Filter Viewer. Просмотрите характеристики фильтра. Занесите примерный вид АЧХ и диаграммы полюсов и нулей в тетрадь, с указанием значений на границах полос пропускания и задерживания (их можно считать из раздела Measurements или измерить, применяя маркеры). Укажите также порядок фильтра (раздел Specifications, поле Order).

5. Если у Вас осталось время, выполните задание для другого варианта, попробовав синтезировать фильтр другого типа.

6. Напишите комментарии и выводы по проделанной работе.